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Abstract. As AI becomes more widespread and deep learning models 
are integrated into various aspects of industry, scientists and engineers 
face the challenge of integrating human operators and end users into the 
design and operation of cognitive cyber physical systems. This challenge 
is exacerbated by the fact that many deep learning models employ black 
box approaches that lack transparent, human-interpretable algorithms. 
This paper addresses the challenge faced by proposing a human cyber 
physical network model, inspired by the human brain. In contrast to con-
temporary deep learning models, ours leverages a vector symbolic archi-
tecture to interactively learn human behavior and to develop cognition 
within the networks. To test this exploratory model, a two-part simula-
tion is conducted. Using a modified industrial human-machine interac-
tion dataset, we create structural networks of human, cyber, and physi-
cal object representations. These objects and their situational contexts are 
then encoded as hyperdimensional vectors. With context-dependent thin-
ning, our model builds analogical episodes featuring distributed, parallel 
associative memories. The proposed model is shown to have analogical 
reasoning capabilities, with object nodes learning structural characteris-
tics such as their hierarchical, or part-whole relationships within a net-
work. Functional characteristics, such as human motion patterns and is-a 
relationships are learned as well. The model’s accuracy and performance 
can be transparently audited using established algorithms from network 
science. The results in this paper indicate that by designing systems as 
brain-inspired networks of human, cyber, and physical objects, vector 
symbolic architectures can be used to learn their structure and function 
by human-interpretable methods. Thus, the accountability inherent in the 
proposed model increases AI explainability in human cyber physical sys-
tems. 
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1 Introduction 

The transition from Industry 4.0 to Industry 5.0 presents a significant challenge 
in designing production systems that are human-centric, resilient, and sustain-
able [ 38]. To address this challenge, researchers are focusing on the design and 
implementation of cognitive human-cyber-physical systems (HCPS). These sys-
tems comprise complex networked agents operating at various levels of man-
ufacturing hierarchies, interacting across human, cyber, and physical domains 
[ 11, 35]. 

Graph neural networks (GNNs) have been heavily researched as a way to 
learn representations in complex networked systems [ 14, 41]. However, learn-
ing over local manifolds in hierarchical, complex cyber physical systems limits 
how much compositionality can be represented [ 33]. 

The authors in [ 5] used a graph encoder-decoder model to learn action pat-
terns in graphs of human and physical object nodes. A later paper [ 19], pro-
posed a dataset called the Collaborative Action Dataset (CoAx), based on the 
dataset in [ 5]. CoAx was used to learn human motion patterns in a number of 
tasks, including human-robot collaboration in an industrial setting. However, 
the artificial neural networks (ANNs) typically employed in GNNs and in con-
volutional neural networks suffer from the variable binding problem [ 12], or 
the lack of ability to connect abstract symbols to real-world features - an aspect 
of human cognition. 

The most interesting problem with current machine learning approaches in 
regard to this paper, however, is that the lack of interpretability and explainabil-
ity in the models seems to scale with their complexity. As is pointed out in [ 21], 
there is a trade-off between prediction capabilities in deep learning models, and 
their ability to to explain how said predictions were made. Neuro-symbolic AI 
has been focused on as a means of increasing machine learning explainability 
in many fields, according to a 2024 review [ 39]. One approach discussed in the 
review involved the use of a vector symbolic architecture (VSA) together with a 
neural network [ 7], but fell short of improving explainability due to the model’s 
computation in the neural network. 

VSAs have been employed to model human-like cognitive functionality and 
analogical reasoning within hierarchical data structures [ 8, 28]. Using VSAs 
without the augmentation of neural networks would likely improve explain-
ability in machine learning models for HCPS. Nevertheless, the advancement in 
this domain is impeded by the lack of methods to construct analogical episodes 
through world observation [ 18]. 

An exemplary system embodying the ideal HCPS qualities of cognition, 
robustness, and efficiency is the human complex brain network [ 3]. Brain-
inspired complex networks have been utilized in the human and physical 
domains of sociotechnical systems [ 23, 32, 34]. However, there is a scarcity of lit-
erature on employing brain-inspired networks across human, cyber, and phys-
ical domains. Additionally, there are limited concrete industrial use cases fea-
turing operational implementations of VSAs [ 17, 18]. Thus, there is an unex-
plored research area in the combined use of brain-inspired complex networks
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and VSAs to tackle Industry 5.0 challenges, such as cognitive HCPS design, as 
well as an opportunity to evaluate the explainability of such systems from a 
new perspective. 

To create value in an Industry 5.0 context, manufacturing organizations 
must integrate humans and machines within complex environments where het-
erogeneous data sources present interoperability challenges [ 25]. Beyond inte-
gration, humans must play a central role in production, necessitating machine 
intelligence capable of collaborating with humans at various hierarchical levels 
[ 40]. The objective of developing systems with human-like artificial intelligence 
involves overcoming the problem of compositionality, as well as achieving gen-
eralization and causal discovery [ 18]. Several VSA models have attempted to 
address these goals, but whether they provide a holistic solution applicable to 
HCPS design remains an open question. 

Another open question - the one addressed in this paper - is whether 
explainability would emerge as a property of such a model. The authors 
in [ 4] propose a taxonomy for the evaluation approaches for interpretabil-
ity in machine learning, or rather, the ability of a system to explain its 
reasoning. Their functionally-grounded, application-grounded, and human-
grounded approaches would provide a measure of rigor to the evaluation of 
explainability in a VSA-based model. 

VSA models exist that learn hierarchical compositions from both sensor and 
actuator interaction patterns, as well as from noisy human-machine interactions 
[ 6, 20]. While these models can address Industry 5.0 interoperability issues and 
human-machine integration, they do not place humans in a central role. Fur-
thermore, they often utilize centralized architectures, requiring the transmis-
sion or broadcasting of sensor states onto a network before actuator updates, 
which can diminish efficiency in wireless sensor networks [ 37]. 

In functionally-grounded approaches to the evaluation of interpretability 
[ 4], formal definitions of interpretable models are used as proxies to evaluate 
explainability in a model. In the composition of a hierarchical network such 
as an HCPS, defined graph theoretical models from network science could be 
used as proxies for thier efficiency optimization. 

Certain VSAs, such as associative-projective neural networks (APNNs), 
can generalize from novel input patterns to known output patterns, typically 
employing autoassociative memories [ 29] or implementing both auto- and 
hetero-associative memories related through spectral graph theory [ 13]. How-
ever, the vectors are randomly generated to enforce the near orthogonality nec-
essary for Hebbian learning and hyperdimensional computing in general [ 24]. 
Any operation on, or permutation of, random binary vectors produces a new 
vector that must be bound as a role or filler to be meaningful. Consequently, 
VSAs typically require supervised learning with labels and explicitly defined 
structures [ 16]. 

Domain expertise is required for application-grounded approaches [ 4], in 
which a human with knowledge of a particular task evaluates the quality of an
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explanation in the system. Such knowledge could apply to parameters needed 
to optimize classification scores for generalizability to other similar HCPS. 

Despite VSAs’ capability for causal discovery through analogical reasoning, 
there is a notable lack of practical examples [ 18], especially for HCPS. This is 
likely due to the absence of mechanisms for building analogical episodes. 

In this paper, we therefore propose a brain-inspired model for cognitive 
human cyber physical networks (HCPNs), employing methods from neuro-
science and network science within an APNN to address the limitations of 
existing VSAs. The model addresses the variable binding problem inherent in 
contemporary deep learning and GNN models, while providing a mechanism 
to build real-world representations of HCPS that can be implemented in cloud 
applications or on constrained IoT devices. Taken as a whole, the proposed 
model enables the construction of HCPS episodes with analogical reasoning 
capability. Through a simulation with the model, the aim of this paper is to 
answer the following research question: 

RQ: As a consequence of its interpretable methods, is explainability an emergent prop-
erty of a brain-inspired HCPN model? 

The remainder of this paper is structured as follows. In Sect. 2, fundamen-
tal theoretical concepts from the intersection of neuroscience, network science, 
and VSAs are provided. These concepts are then used in Sect. 3, as a foundation 
upon which an HCPN model and APNN implementation are based. In Sect. 4, 
the model is audited in a simulation that includes: the use of a modified dataset 
from the literature to build HCPNs and their associated analogs; the retrieval 
of learned symbolic representations for part-whole inference; and the mapping 
of related representation components for is-a inference. For the latter two parts 
of the simulation, the explainability is evaluated using functionally-grounded 
and application-grounded approaches [ 4]. Finally, conclusions are drawn from 
the simulation, future work is discussed, and the question of whether explain-
ability exists in the proposed model is addressed. 

2 Theoretical Concepts 

2.1 Brain-Inspired Structural, Functional, and Effective Networks 

Human-cyber-physical systems (HCPS) are complex networks of intercon-
nected agents [ 11, 35]. Such systems can be described by their structure, func-
tion, and behavior [ 10]. Two important technologies that support the design 
and operation of robust and efficient HCPS are the industrial internet of things 
(IIoT) and digital twins (DTs) [ 38]. It is conceivable that the nodes of these com-
plex networks of of human, cyber, and physical agents could be modeled as 
DTs, with their links defined as IIoT network connections. The structure, func-
tion and behavior of the HCPS could then be modeled as well. 

The human brain, as a robust and efficient complex system, exemplifies 
structural, functional, and effective networks, making it an ideal model for
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HCPS design [ 3, 9]. Structural networks within brain models represent anatom-
ical connections shaped by temporally correlated functional activity in differ-
ent regions of the brain. Functional networks are defined by time-dependent 
interactions between brain regions, which in turn, influence structural network 
changes. Finally, effective networks capture causal associations between neural 
regions [ 3]. An example of an HCPS analog of this concept could be publish-
subscribe connections between DTs of sensor nodes as structural network links, 
with instantaneous messages of sensor states as functional network links, and 
event trigger values as effective links [ 31]. Neuroimaging techniques like fMRI 
identify structural networks in brains by creating correlation matrices that can 
be thresholded into adjacency matrices [ 3]. In the HCPS analogy, structural 
links between statistically relevant agents could be identified from temporal 
correlations in their data, as illustrated in Fig. 1. 

Fig. 1. Illustration of cross-correlation and threshold adapted from [ 3] (left) and its con-
cept adapted to a factory (right) 

Brain networks exhibit properties of scale-free networks, reflecting both 
robustness and efficiency [ 1, 3]. These properties are observed in brain-inspired 
networks applied to human and physical domains [ 23, 32]. Extending this con-
cept to the cyber domain requires symbolic representations of structural, func-
tional, and effective relationships for human and physical assets. Such rep-
resentations are essential for applying brain-inspired models to explainable 
machine learning for HCPS. 

2.2 Vector Symbolic Architectures and Context-Dependent Thinning 

The eigenvalues and eigenvectors of a graph’s Laplacian matrix are related 
to many defining aspects of the underlying network [ 22]. Both [ 32] and [  23] 
highlight the importance of the second smallest eigenvalue - the Fiedler value
- in characterizing network attributes such as connectivity and robustness in 
human and physical domains. From these examples in the literature, it follows
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that if human and physical assets were nodes in a graph, the Laplacian eigen-
values and eigenvectors could serve as meaningful representations of their con-
texts in the cyber domain. 

Example: an adjacency matrix that results from a threshold matrix of correlations 
between human, cyber, and physical objects has column vectors a1, a2, and  a3, 
each corresponding to the H, C, and P nodes in a directed graph (see Fig. 2). If 
the Laplacian matrix for the graph is symmetric, then its eigenvectors will be 
orthogonal with respect to one another [ 36], which is also a property required 
of symbolic representations in VSAs [ 18]. The eigenvectors v1, v2, v3, ordered 
by increasing magnitude of their eigenvalues λ1, λ2, λ3 may then symbolically 
represent the graph nodes and their directed adjacency matrix column vectors. 

Fig. 2. . 

The scenario in the example works, provided the column- and eigenvectors 
are encoded in a meaningful manner. However, as [ 29] point out, the challenge 
is to represent such numerical vectors by hyperdimensional vectors (HDVs) 
that preserve similarity to the originals. 

In contemporary VSAs [ 15, 26], binding and bundling operations such as cir-
cular convoltution and XOR are capable of encoding graphs. While these rep-
resentations preserve unstructured similarity and control the density of their 
HDVs, they often produce what is known as ‘superposition catastrophe’ [ 30]. 
This results in erroneous similarities between vectors having different struc-
tures, where an HDV composed of elements ab, cd, and  e f  would be similar to 
an HDV having a composite element ad or b f . 

As an example, suppose we create an HDV representation of eigenvector 
v1 = (1, 0, 1) by binding its element position roles ( p_1, p_2, p_3 ) to their corre-
sponding value fillers (one, zero, one), then bundling each element into a com-
posite HDV to give eigvec_1 = [(p_1 ⊗ one) ⊕ (p_2 ⊗ zero) ⊕ (p_3 ⊗ one)]. 1

1 The operator ⊗ denotes binding, and ⊕ is bundling.
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Because only unstructured similarity is preserved, it could be impossible to dis-
tinguish between eigvec_1 and eigvec_2. This is because the latter would rep-
resent v2 = (0, 1, 1) and be composed of elements such as (p_2 ⊗ one). 

On the other hand, the context-dependent thinning (CDT) of sparse binary 
distributed representations (SBDRs) proposed in [ 28, 29] preserve both struc-
tured and unstructured similarity, and an SBDR composed of elements ab, cd, 
and e f  would be less similar to an SBDR having a composite element ad or 
b f  when using permutations of the components to represent their positions or 
order. Such a permutation is denoted X∼y, with  X the SBDR and y the position 
number or order. 

Additive CDT [ 28] is achieved by taking a composite SBDR that is a disjunc-
tive superposition of two or more SBDRs, for example Z = A ∨ B ∨ C, and then 
carrying out a thinning operation, which is an iterative conjunction of Z with 
different permutations of itself. The thinning is denoted with angle brackets, 
with 〈Z〉 = 〈A ∨ B ∨ C〉 having a subset of the active bits from each of its com-
ponents A, B, and  C. The total number of active bits in 〈Z〉 is proportional to 
the number of active bits in each component SBDR. 

From the above example, the SBDR representations for eigenvectors v1 
and v2 using CDT notation would be eigvec_1 = 〈〈p_1 ∨ one∼1〉 ∨ 〈p_2 ∨ 
zero∼2〉 ∨ 〈p_3 ∨ one∼3〉〉, and  eigvec_2 = 〈〈p_1 ∨ zero∼1〉 ∨ 〈p_2 ∨ one∼2〉 ∨
〈p_3 ∨ one∼3〉〉. Structured similarity is preserved, and a different subset of 
active bits from p_2 are present in 〈p_2 ∨ zero∼2〉 than are present in 〈p_2 ∨ 
one∼2〉. Thus,  eigvec_1 and eigvec_2 can be easily distinguished from each 
other. 

2.3 Associative-Projective Neural Networks 

APNNs [ 18, 28, 29] are made up of modules at different hierarchical levels, hav-
ing different modalities. Modules are in turn made up of neural fields, which 
are sets of binary neurons having the same dimension as the SBDRs upon which 
they operate. Each module has a neural field designated as an associative mem-
ory that stores a set of SBDRs for later recall, and one or more neural fields 
used as buffers to store SBDRs temporarily, similar to RAM. The neural fields 
are connected by projective connections, which can either transmit unchanged 
SBDRs between fields, or activate certain bits in order to permute them. A 
simple example of a parallel APNN module architecture adapted from [ 29] is  
shown in Fig. 3. 

The lowest level in an APNN contains elementary component SBDRs, 
which through CDT operations, are composed to form higher-level represen-
tations. In such an architecture, a noisy or incomplete version of an SBDR can 
be used as a probe to find the most similar SBDR in memory and return a com-
plete or cleaned up version.
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Fig. 3. APNN architecture diagram adapted from [ 29] 

Operations using this procedure include finding a whole from its part by 
probing for example, M2 with A to get 〈A ∨ B〉, or returning a filler for a role 
[ 28] by using 〈A ∨ B〉 ∧ ¬A to get noisy filler B′, which is then used in prob-
ing M12 to get the cleaned up filler B. These operations are reversible, and 
analogous operations can be used to retrieve a part given a whole, and a role 
given a filler. These operations could be used to infer, for example, an entire net-
work of cyber physical assets from a single SBDR representing a human node. 
This implies the capability for brain-like analogical reasoning: description of an 
HCPS using symbolic representations, retrieval of the correct modules, map-
ping corresponding components, and inferring knowledge based on their sim-
ilarities. The model proposed in the next section aims to enable this capability. 

3 A Brain-Inspired Model for Human Cyber Physical 
Networks 

3.1 Human Cyber Physical Networks 

In order to build analogical episodes, such as analogs of HCPS, real-world data 
must be converted to symbolic representations of systems. We therefore pro-
pose a brain-inspired model for human cyber physical networks (HCPNs). As 
described in the example from Sect. 2.1, time-series data of changing param-
eters are used to establish structural communication links between human, 
cyber, or physical assets. Given a set of time-stamped states or discrete val-
ues, velocities are calculated for each time t at each node in a pre-determined 
node pool. The Pearson correlation coefficient [ 2] is then calculated using the 
timestamped velocity vectors x and y, from each pair of nodes. The coefficient 
is normalized, and the lag between the time series determines the sign of the 
resulting correlation score CS as shown by



352 C. J. Gish et al.

CS = |r|sgn(lag(x, y)), (1) 

where 

r = ∑
(xi − x̄)(yi − ȳ) 
(n − 1)sxsy 

, (2) 

with sx and sy representing the standard deviation of x and y, respectively. 
The correlation scores make up the elements of the correlation matrix. If a given 
element in this matrix is at or above the correlation threshold (CT), then a link 
is established between the two nodes. Since the structural HCPN is a directed 
network as shown in Fig. 2, the direction of the edge in the resulting graph is 
determined by sgn(lag(x, y)). 

After thresholding, a structural HCPN is generated. The average number 
of links, or average degree 〈d〉 determines the average amount of information 
in an SBDR. This is because the more links a node has, the more dense the 
column vector of the adjacency matrix is for that node. The way information 
is distributed in the HCPN is determined by the degree distribution pk, or the  
probability that a given node in the HCPN will have k neighbors [ 1]. 

Since human-centrism is fundamental to HCPS design, the nodes in the 
HCPN should behave such that they are influenced the most by the human 
nodes. Thus, we bias the human entries in the correlation matrix with a human 
weight (HW), which results in the human nodes having a high number of links 
to other nodes, or a high out-degree dout in the HCPN. This bias can be seen 
as similar to the preferential attachment for nodes in scale-free networks [ 1]. 
We hypothesize that the analogical reasoning capability of our model, as in 
the case of human brains, is related to the scale-free property. It would also 
seem reasonable to conclude that by using the interpretable methods from net-
work science for auditing and improvement, the proposed HCPN model would 
exhibit explainability. 

3.2 Sparse Binary Distributed Representations of Laplacian Matrix 
Eigenvectors 

In order to represent the information in the structural HCPNs, a method of 
encoding roles and filler values for individual vector elements is needed. The 
roles can be randomly generated SBDRs [ 29]. However, it is also practical to 
have a method to encode arbitrary numerical values for vector element fillers. 
This enables unsupervised learning of novel adjacency matrix column vectors, 
as well as Laplacian matrix eigenvectors. 

For this purpose, we adapt a method from [ 27] to encode numeric values 
by setting a number of consecutive SBDR bits active, at an index value propor-
tional to the numeric value. All other bits in the SBDR are zeros.
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These SBDR fillers are then bound to randomly generated roles, using CDT 
as in the example from Subsect. 2.2. This is illustrated in Fig. 4, for an HCPN 
with N = 3 nodes. With this encoding scheme for SBDR representations 
of Laplacian matrix eigenvectors, we propose an APNN implementation for 
machine learning in HCPNs. 

Fig. 4. SBDR encoding scheme adapted from [ 27], used in a vector example 

3.3 The Laplacian Associative-Projective Neural Network 

As discussed in Subsect. 2.3, APNNs [ 29] can be used to enable analogical rea-
soning capabilities in systems. We propose the Laplacian associative-projective 
neural network (LAPNN) to unlock this capability for the HCPN model. The 
LAPNN associative memory 2 layout is shown in Fig. 5. 

At the base level L0, the role and filler SBDRs r_actn_xx and f_actn_xx 
are components of the composite vector actn_xx in L1, that represents actions 
defined in an action-object dataset [ 19]. The velocity measurements in the times-
tamped data for each HCPN node are represented by the composite SBDR 
vel_xx at level L1. In general, the composition hierarchy is as described in Sub-
sect. 2.3. All nodes in the HCPN contain an LAPNN node, forming a distributed 
associative memory. One notable composite SBDR is AGG in level L5. This top  
level representation is an aggregation of all LAPNN modules for nodes in the 
next lower network hierarchy. In other words, AGG can be probed to return an 
entire HCPN, or aggregation of Node SBDRs.

2 Although the effective component of the HCPN E is shown here, it was not used or 
discussed in this paper. 
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Fig. 5. LAPNN hierarchical memory layout 

4 Simulation and Evaluation of Explainability 

4.1 Data Preparation and Procedure 

The data preparation code, HCPN and LAPNN models, and simulation code 
were all written in Python 3.10.12. The simulation was run on a PC with Ubuntu 
22.04 installed. 

For the simulation, the Collaborative Action Dataset for human motion fore-
casting [ 19] was chosen. The dataset features six different human subjects, each 
performing the following three tasks: 1) valve terminal plug n play, 2) valve 
assembly, and 3) collaborative soldering. Each task was carried out in a total of 
ten takes, and computer vision image frames were recorded for each take. The 
general directory tree structure for the dataset is shown in Fig. 6 (left). To pre-
pare the data for the simulation, the dataset was modified to include a velocity 
entry for each timestamped frame. This was calculated using the relative x, y, z 
position data between consecutive frames as shown in Fig. 6 (center). A pool of 
DT HCPN nodes was created from Web of Things [ 31] Thing Description files, 
and each node object was initialized with structural and effective edges, and is 
illustrated for example nodes A and B in Fig. 6 (right). The pseudocode for the 
latter two procedures is given as Algorithms 1 and 2 in the Appendix. Finally, 
the simulation was carried out in two steps: a part-whole inference, and an is-a 
inference.
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Fig. 6. Creation of example HCPN nodes A and B from CoAx dataset 

In the part-whole inference step, three unique HCPNs corresponding to the 
three tasks in the dataset, as well as their analogs (LAPNNs) were built for a sin-
gle human subject in one take, for training. Another HCPN and its analog were 
built for another human subject, in a different take for testing. The LAPNN 
representation of the HCPN human node from the testing side was used as a 
probe to infer which HCPN it belongs to (to which whole HCPN the human part 
belongs) on the training side. This was a functionally-grounded evaluation [ 1] 
of explainability in the model, in that the program used a known parameter, 
adjusting the correlation threshold when building structural HCPN links. 

In the is-a inference step, three versions of the same HCPN corresponding to 
one task, as well as their analogs, were built for training in a single take. Each 
HCPN had a different human subject. An HCPN corresponding to the same 
task, as well as its analog, was built for testing in another take. The HCPN was 
for one of the same three human subjects. The LAPNN functional component of 
the human node in the test HCPN was mapped and compared to the LAPNN 
functional components in each of the human nodes in the learned HCPNs (is the 
velocity vector similar to that of a known pattern?) seen for subject x. This was 
an application-grounded eveluation [ 1], because a domain expert (program-
mer) adjusted the human weight parameter of the correlation algorithm for a 
constant correlation threshold. 

4.2 Part-Whole Inference 

The tasks 1–3 were selected from the dataset for training. Pseudorandom num-
bers 5 and 6 were generated for the subject and the take, respectively. The train-
ing context was initialized, and the three structural HCPNs were created. The 
HCPN for task 1 is shown in Fig. 7a. Each Node’s LAPNN module was gener-
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ated, and all of the module nodes were aggregated into one composite LAPNN 
module for each HCPN. 

Fig. 7. Training and Testing HCPNs 

Pseudorandom numbers generated for subject 6, take 2, and task 1. A test 
context was initialized and the HCPN (Fig. 7b) corresponding to task 1 was 
created for take 2. Its LAPNN modules and aggregate module node were gen-
erated as well. 

The human node of the test HCPN was then used as a probe on the aggre-
gated LAPNN module nodes for the three training HCPNs, for different values 
of the correlation threshold (CT), resulting in similarity scores x1, x2, and  x3. 
Probing the aggregated nodes was equivalent to the operations 

human_0task_1 ∧ task_1, 
human_0task_1 ∧ task_2, and  
human_0task_1 ∧ task_3. 

The correct class condition was true when the probe from the test context 
resulted in the similarity score corresponding to task 1 in the training context 
(x1) being the highest. The results are shown in Table 1 with the deviation from 
the mean x1 − x̄ and standard deviation s. 

The model correctly classified the test HCPN human each time. However, 
the CT value alone does not appear to have an effect on part-whole classifica-
tion performance. 

4.3 Is-A Inference 

For the is-a training, the chosen human subjects were 4, 5, and 6. Pseudoran-
dom numbers 2 and 9 were generated for the training task and take. For the 
test HCPN, task 2 was taken to be identical to that of the training case. Pseudo-
random number 8 was generated for the test take, and 6 was generated for the 
test subject.
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Table 1. Data for part-whole inference with correlation threshold CT 

CT Correct class x1 − x̄ s 

0.9 True 0.04636 0.04015 

0.8 True 0.04654 0.04031 

0.7 True 0.04658 0.04035 

0.6 True 0.04611 0.03994 

0.5 True 0.04584 0.03970 

0.4 True 0.04592 0.03977 

0.3 True 0.04592 0.03977 

0.2 True 0.04584 0.03970 

0.1 True 0.04640 0.04019 

0.0 True 0.04585 0.03971 

The CT value was set in code to be 0.9 for the remainder of the simulation. 
The training and test contexts were initialized, and the HCPNs and LAPNNs 
were generated in a manner similar to that in the part-whole step. 

The functional LAPNN component of the human node in the test HCPN 
was then mapped to the corresponding components of the three human nodes 
in the training HCPN. It was used as a probe for different values of the human 
weight parameter (HW), to get a similarity score for each. The equivalent oper-
ations are 

human_0_Fsubject_6 ∧ human_0_Fsubject_4, 

human_0_Fsubject_6 ∧ human_0_Fsubject_5, and  

human_0_Fsubject_6 ∧ human_0_Fsubject_6. 

As in the part-whole classification, the correct class condition was true for the 
similarity score correspong to subject 6, or x3, to be the highest. The resulting 
data are shown in Table 2. 

Table 2. Data for is-a inference with human weight parameter HW 

HW Correct class x3 − x̄ s 

0.00 True 0.00023 0.00040 

0.25 True 0.00049 0.00051 

0.50 False −0.00019 0.00033 

0.75 False 0.00000 0.00000 

1.00 False 0.00000 0.00000 

1.25 False 0.00000 0.00000 

1.50 True 4.24331e−5 3.67482e−5 

1.75 True 0.00015 0.00026 

2.00 True 0.00049 0.00084
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Interestingly, the test subject was classified correctly in training HCPNs 
where CT was high and HW was low, and where both CT and HW were high. 
In the first case, none of the nodes in the HCPN were connected (Fig. 8a). In the 
latter, the human-related nodes in the HCPN had a relatively higher number of 
links than the rest of the nodes (Fig. 8b). This suggests that when links exist in 
the network, classification performance is better when more are attached to a 
few nodes in the HCPN. 

Fig. 8. Training HCPNs 

5 Conclusions and Future Work 

In this paper, we proposed a brain-inspired model for human cyber physical 
networks (HCPNs), as well as a Laplacian associative-projective neural net-
work (LAPNN). 

We hypothesized that through symbolic representation of the HCPN Lapla-
cian eigenvectors, analogical reasoning capability could be achieved. In a two-
part experiment, it was found that analogical episodes, or analogs of HCPNs, 
can be built or described using correlated time series data for pairs of human, 
cyber, and physical object nodes. The LAPNN modules for each node were 
found to be capable of retrieving their whole network when used as probes in 
a distributed associative memory. Furthermore, the functional time-dependent 
changes in data associated with human-object interaction can be mapped to cor-
responding patterns between nodes. Thereafter, they can correctly identify (i.e. 
infer) a known human subject under certain conditions. 

The test HCPN was easily identified among three learned HCPNs. How-
ever, this seems to be independent of the thresholding used in building struc-
tural links, as well as the average degree of the structural HCPNs. The func-
tional activity component of the HCPNs can be used under certain conditions 
to identify human subjects, from their behavior patterns and, specifically, their
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velocities within 3D space. This appears to be related to the degree distribution 
of the HCPNs. 

One indication of weakness in the model is that the SBDRs for nodes in a 
given HCPN are quite similar to one another, compared to the strongly dissimi-
lar vectors seen in other VSAs [ 15, 26]. This is seen in the relatively low standard 
deviations in Tables 1 and 2. A possible cause is that the velocity vector repre-
sentations (in level L3 of the LAPNN memory) are highly thinned, and do not 
have roles associated with their filler values. This is left for future investigation. 

The simulation in this paper brought to light possibilities for future devel-
opment of the HCPN and LAPNN models. For example, functional HCPNs 
can very likely be created in order to learn and generalize dynamics or closed-
loop control algorithms. It seems plausible that effective HCPNs can be used 
for human-grounded evaluations of the model’s explainability with non-expert 
operators as well. For example, the modified dataset used in this paper could be 
generated through hand-guiding a collaborative robot, and the model’s accu-
racy of the end-effector pose predictions could then be evaluated. 

The evaluations carried out in this paper indicate that the analogical infer-
ence capability of the LAPNN in the simulation can be improved by inter-
pretable methods from neuroscience and network science. We therefore answer 
the RQ from Sect. 1 in the affirmative, and conclude that explainability is indeed 
an emergent property of the proposed HCPN model. 

Appendix 

Algorithm 1 
procedure READ_HCPNODES(directory_path) 

Initialize an empty list dt_hcpnode_pool 
for each file in directory_path do 

if file extension is ‘.json’ then 
Load file as DT_HCPNode object 
Initialize node with data from file 
Append node to dt_hcpnode_pool 

end if 
end for 
Create a ranking dictionary to order nodes 
for each node in dt_hcpnode_pool do 

Compute rank 
Store node and rank in the ranking dictionary 

end for 
Sort dt_hcpnode_pool based on rank 
Return sorted dt_hcpnode_pool 

end procedure
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Algorithm 2 
procedure DATASET_TO_CONTEXT(subject, task, take, ground_truth_dir, hcpn-
ode_pool, weight, threshold) 

Define overlap frame range for action transitions 
Construct file paths for ground truth and derived data 
Load ground truth data from JSON file 
for each action sequence in ground truth do 

Identify start and stop frames 
for each node in hcpnode_pool do 

Match node class with ground truth class 
Assign effective edges based on matched actions and objects 

end for 
Assign velocity data from derived files to the corresponding nodes: 
Thin out data arrays exceeding 60 elements 
Attach velocity data to node’s temporary storage 

Identify structural edges using velocity correlation: 
Use multithreading to process each node’s connections 
Apply correlation thresholds to determine neighbors 

end for 
Return updated hcpnode_pool with structural and effective edges 

end procedure 
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